NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (I SEMESTER) (APPLICABLE FROM SEPTEMBER 2021)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL			
01	02	03	04	05	06	07	08	09			
1	BSC (NEP) - I YEAR, I SEMESTER	P-1 (MAJOR &	variables an 2. Sketch cu 3. Apply de	<u>Itcomes</u>: 1. Know the concepts of conditional their applications in the form of murves in a plane using its mathematicatives in Optimization, Social scientiation, Social scie	ean value theore al properties in t ences, Physics ar	em and Taylor's theorem the different coordinate s and Life sciences etc.					
	CREDITS-4 T:04	MINOR) DIFFERENTIAL CALCULUS	UNIT-I	Limit, continuity and differentiability of function of single variable, Cauchy's definition, Heine's definition, Uniform continuity, Borel's theorem, boundedness theorem, Bolzano's theorem, Intermediate value theorem, extreme value theorem, Darboux's intermediate value theorem for derivatives, Chain rule, indeterminate forms.	MIN. 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS			
			UNIT-II	Rolle's theorem, Lagrange and Cauchy Mean value theorems, mean value theorems of higher order, Taylor's theorem with	MIN 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS			

			1		
	various forms of remainders, Successive differentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables.		VIDEO,CLASS ROOM TEACHING METHOD)		
UNIT-III	Partial differentiation, Euler's theorem on homogeneous function, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians, Inverse function theorem and implicit function theorem.	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
UNIT-IV	Tangents and normals, Asymptotes, Curvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple points, Parametric representation of curves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
Shantha, D Suggested	1 s: 1. T.M. Apostol, Calculus Vol. I, Jo ifferential Calculus, New Age Publica Reading: 3. H. Anton, I. Birens and as and R.L. Finney, Calculus, Pearson	ation. S. Davis, Calcu	lus, John Wiley and Son		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

			https://open http://heec	rences: 1.Digital platforms web links <u>nlearninglibrary.mit/edu/courses</u> content.upsdc.gov.in/SearchContent.ac w.lkouniv.ac.in/en/article/e-content-f	<u>spx</u>	-	x.org			
2	BSC (NEP) I YEAR, I SEMESTER CREDITS-4	P-2 (MAJOR) (MATRICES	2. Study th3. Recogniz4. Link the5. Analyze6. Explain	 <u>Course Outcomes</u>: 1. Find the rank and eigen values of matrices. 2. Study the system of linear homogeneous and non-homogeneous equations. 3. Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, etc. 4. Link the fundamental concepts of Groups and symmetrical figures. 5. Analyze the subgroups of cyclic groups. 6. Explain the significance of the notion of cosets, normal subgroups, and factor group. 7. Understand the concepts of rings, subrings and fields. 						
	T:04)4 & ALGEBRA)	UNIT-1	Elementary operations on matrices, Rank of a matrix, Echelon and normal form of a matrix, Inverse of a matrix by elementary operations, System of linear homogeneous and non- homogeneous equations, Theorems on consistency of a system of linear equations. Eigen values, Eigen vectors and characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix.	MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS		
			UNIT-II	Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups, Coset decomposition, Lagrange's theorem and its consequences,	MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS		

	Fermat and Euler theorems. Normal subgroups, Quotient groups.						
UNIT-II	 Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products. 	MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS		
UNIT-IV	Rings, types of rings	MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS		
Suggeste Topics in Web Ref <u>https://op</u> <u>http://hec</u>	References: Text Books: 1. Linear Algebra by K. Hoffman and R. Kunze. 2. V. Sahai and V. Bist, Algebra, Narosa Suggested Readings: 3. J.B. Fraleigh, A First Course in Abstract Algebra, Pearson 4. I.N. Herstein, Topics in Algebra, John Wiley & Sons Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science						

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (II SEMESTER) (APPLICABLE FROM JANUARY 2022)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL				
01	02	03	04	05	06	07	08	09				
1	BSC (NEP) I YEAR, I I SEMESTER CREDITS-4	P-2 (MINOR) (MATRICES	 Find the : Study the : Recogniz Link the : Analyze : Explain t 	 <u>Course Outcomes:</u> 1. Find the rank and eigen values of matrices. 2. Study the system of linear homogeneous and non-homogeneous equations. 3. Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation group 4. Link the fundamental concepts of Groups and symmetrical figures. 5. Analyze the subgroups of cyclic groups. 6. Explain the significance of the notion of cosets, normal subgroups, and factor group. 7. Understand the concepts of rings, subrings and fields. 								
	T:04	& ALGEBRA)	UNIT-I	Elementary operations on matrices, Rank of a matrix, Echelon and normal form of a matrix, Inverse of a matrix by elementary operations, System of linear homogeneous and non- homogeneous equations, Theorems on consistency of a system of linear equations. Eigen values, Eigen vectors and characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix.	MIN. 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS				
			UNIT-II	Equivalence relations and	MIN	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION				

	partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups, Coset decomposition, Lagrange's theorem and its consequences, Fermat and Euler theorems. Normal subgroups, Quotient groups.	13 LECTURES	TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH ASSIGNMENTS AND DISCUSSIONS
	isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products.	MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
Suggester Topics in	es: ks: 1. Linear Algebra by K. Hoffman a d Readings: 3. J.B. Fraleigh, A First C Algebra, John Wiley & Sons erences: Digital platforms web links: N	ourse in Abstrac	et Algebra, Pearson 4. I.I	N. Herstein,	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

				nlearninglibrary.mit/edu/courses									
				ontent.upsdc.gov.in/SearchContent.as									
			https://www	w.lkouniv.ac.in/en/article/e-content-fa	culty-of-science	<u>e</u>							
2	BSC (NEP) I YEAR, II	P-3 (MAJOR)	 MAJOR) MAJOR) 2. Beta and Gamma functions and their properties. 3. The valid situations for the inter-changeability of differentiability and integrability with infinite sum, and 										
	SEMESTER	INTEGRAL CALCULUS		ation of transcendental functions ir		er series. 4. Compute	area of surfaces of	revolution and the					
	CREDITS-4	CALCULUS		solids by integrating over cross-se									
	T:04	UNIT-I	Definite integrals as limit of the sum, Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem of integral calculus, Mean value theorems of integral calculus, Differentiation under the sign of Integration.	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS						
			UNIT-II	Improper integrals, their classification and convergence, Comparison test, µ test, Abel's test, Dirichlet's test, quotient test, Beta and Gamma functions.	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS					
			UNIT-III	Rectification, Volumes and Surfaces of Solid of revolution, Pappus theorem, Multiple integrals, change of order of double integration, Dirichlet's theorem, Liouville's theorem for multiple integrals.	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS					
			UNIT-IV	Vector Differentiation, Gradient, Divergence and Curl, Normal on a	MIN 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDING	EVALUATION THROUGH ASSIGNMENTS					

				surface, Directional Derivative, Vector Integration, Theorems of Gauss, Green, Stokes and related problems.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	AND DISCUSSIONS				
			Mittal, Integ Suggested I Sons. Web Refer https://open http://heeco	ext Books: 1. T.M. Apostol, Calculus Vol. II, John Wiley Publication. 2. Shanti Narayan, P.K. ittal, Integral Calculus, S. Chand. ggested Readings: 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley &								
3	BSC (NEP) – I YEAR, I I SEMESTER	P-4 (MAJOR)	2. To desc	utcomes: a and visualize the fundamental ide ribe some surfaces by using analy knowledge about regular geometr	tical geometry	<i>.</i>						
	CREDITS-4 T:04	(GEOMETRY)	UNIT-I	General equation of second degree, System of conics, Tracing of conics, Confocal conics, Polar equation of conics and its properties.	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS				
			UNIT-II	Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension (Cartesian and vector form).	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS				
			UNIT-III	Sphere, Cone and Cylinder.	MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS				

UN	NIT-IV	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree equation.	MIN 13 LECTURES	VIDEO,CLASS ROOM TEACHING METHOD) ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
Te Ma Sug dim W <u>http</u> htt	acmillan 1ggested F mensions, Veb Refer tps://openl ttp://heeco	Readings: 3. Robert J.T. Bell, Eleme Macmillan India Ltd ences: Digital platforms web links: I <u>earninglibrary.mit/edu/courses</u> <u>intent.upsdc.gov.in/SearchContent.as</u> <u>.lkouniv.ac.in/en/article/e-content-fa</u>	entary Treatise c NPTEL/SWAY	on Coordinate Geometry AM/ MOOCS/Openstax	of three	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC-II YEAR (III SEMESTER) (APPLICABLE FROM JULY 2021)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
I	BSC-II YEAR, III SEM	PAPER-I ALGEBRA	UNIT-I	Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups.	MIN. 14 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	. Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products, Coset decomposition, Lagrange's theorem and its consequences, Fermat and Euler theorems	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	Normal subgroups, Quotient groups, Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism.	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	Rings, Subrings, Integral domains and fields, Characteristic of a	MIN 14 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDING	EVALUATION THROUGH ASSIGNMENTS

				ring, Ideal and quotient rings, Ring homomorphism, Field of quotient of an integral domain.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	AND DISCUSSIONS
				·				FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
Π	BSC-II YEAR, III SEM	PAPER-II MATHEMATICAL METHODS	UNIT-1	Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians.	MIN 14 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	METHOD GET THE UNDERSTANDING OF THE TOPIC DISCUSSED. SS ROOM METHOD) DFFLINE STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC JUSCUSSED. SS ROOM METHOD) DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	Existence theorems for Laplace transforms, Linearity of Laplace transform and their properties, Laplace transform of the derivatives and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms.	MIN 14 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions,	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC	EVALUATION THROUGH ASSIGNMENTS AND

UNIT-J	 Fourier transforms (finite and infinite), Fourier integral. V Calculus of variations-Variational problems with fixed boundaries-Euler's equation for functionals 	MIN 14 LECTURES	PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD) ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF	DISCUSSED. STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC	DISCUSSIONS EVALUATION THROUGH ASSIGNMENTS AND
	containing first order derivative and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than one independent variable, Variational problems in parametric form.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	DISCUSSED.	DISCUSSIONS
					FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC-II YEAR (IV SEMESTER) (APPLICABLE FROM JANUARY 2022)

					•	1		1
S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
I	BSC-II YEAR, IV SEM	PAPER -I DIFFERENTIAL EQUATIONS	UNIT-I	Second order linear differential equations with variable coefficients: Use of a known solution to find another, normal form, method of undetermined coefficient, variation of parameters, Series solutions of differential equations, Power series method.	MIN. 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	Bessel, Legendre and Hypergeometric functions and their properties, recurrence and generating relations.	MIN 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	Origin of first order partial differential equations. Partial differential equations of the first order and degree one, Lagrange's solution, Partial differential equation of first order and degree greater than one. Charpit's method of solution, Surfaces Orthogonal to the given system of surfaces.	MIN 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

			UNIT-IV	Origin of second order PDE, Solution of partial differential equations of the second and higher order with constant coefficients, Classification of linear partial differential equations of second order, Solution of second order partial differential equations with variable coefficients, Monge's method of solution.	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
								FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
П	BSC-II YEAR, IV SEM	PAPER-II MECHANICS	UNIT-1	Frame of reference, work energy principle, Forces in three dimensions, Poinsot's central axis, Wrenches, Null lines and planes.	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform strength.	MIN 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic motion, Motion under other law of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and rough plane curves.	MIN 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

IT-IV Motion of particles of varying mass, Rocket motion, Central orbit, Kepler's laws of motion,, Motion of particle in three dimensions, Rotating frame of reference, Rotating Earth, Acceleration in terms of different coordinates systems.	Image: Pentral lectures notion,, ree ame of h, Image: Pentral lectures l	HOD GET THE UNDERSTANDING 1 OF OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC-III YEAR (V SEMESTER) (APPLICABLE FROM JULY 2021)

EACH PAPER CARRIES 100 MARKS (4 CREDITS)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
Ι	BSC-III YEAR, V SEM	PAPER –I NUMERICAL ANALYSIS	UNIT-I	Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences.	MIN. 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	Numerical differentiation, Numerical Quadrature: Newton Cotes Formulas, Gaussian Quadrature Formulas, System of Linear equations: Direct method for solving systems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition), Iterative methods (Jacobi, Gauss Seidel, Relaxation methods). The	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

	1							
				Algebraic Eigen value problem: Jacobi's method, Givens method,				
				Power method.				
			UNIT-III	Numerical solution of Ordinary differential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods: Milne-Simpson method, Types of approximation: Last Square polynomial approximation, Uniform approximation, Chebyshev polynomial approximation.	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	Difference Equations and their solutions, Shooting method and Difference equation method for solving Linear second order differential equation with boundary conditions of first, second and third type.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			Iye	Books: merical Methods for Engineering and ngar & R.K. Jain. roductory methods of Numerical Ana	llysis by S. S. S	Sastry	S.R.K.	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
Π	BSC-III YEAR, V SEM	PAPER-II LINEAR AND ABSTRACT ALGEBRA	UNIT-1	Automorphism, inner automorphism, automorphism groups and their computations, Conjugacy relations, Normaliser, Counting principle and the class equation of a finite group, Center of group of prime power order. Sylow's theorems.	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	Prime and maximal ideals,	MIN	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION

	Euclidean Rings, Principal ideal rings, Polynomial Rings, Polynomial over the Rational Field, The Eisenstein Criterion, Polynomial Rings over Commutative Rings, unique factorization domain.	09 LECTURES	TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH ASSIGNMENTS AND DISCUSSIONS
UNIT-III	Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and Dimension, Quotient space, Linear transformations, The Algebra of linear transformations, rank nullity theorem, their representation as matrices.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem, Inner product spaces, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram- Schmidt orthogonalization process, Bilinear and Quadratic forms.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
· · · · · · · · · · · · · · · · · · ·	<mark>ce book</mark> in Algebra by I. N. Herstein. Algebra by K. Hoffman and R. Kunze				FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

П	BSC-III YEAR, V SEM	PAPER-III LINEAR PROGRAMMING	UNIT-1	Linear programming problems, Slack and surplus variables, Standard and matrix forms of linear programming problem, Basic feasible solution.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	Convex sets, Fundamental theorem of linear programming, Simplex method.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	Artificial variables, Big-M method, Two phase method, Revised simplex method.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	Duality in linear programming problems, Dual simplex method, Primal-dual method integer programming.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			Reference 1. Linear Pi	book: rogramming by G. Hadley			·	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: **BSC-III** YEAR (**VI SEMESTER**) (APPLICABLE FROM JANUARY 2022)

EACH PAPER CARRIES 100 MARKS(4CREDITS)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
I	BSC-III YEAR, VI SEM	ANALYSIS	UNIT-I	Definition and examples of metric spaces, Neighborhoods, Interior points, Limit Points, Open and closed sets, Convergent and Cauchy sequences, Completeness, Cantor's intersection theorem. Uniform convergence of sequences and series of functions, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Power series.	MIN. 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	Stereographic projection, Continuity and Differentiability of complex functions, Analytic functions, Cauchy Riemann equations, Harmonic functions.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	Complex integration, Cauchy- Goursat theorem, Cauchy's Integral formula, Formulae for first, second and nth derivatives,	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

	1		1	Cauchy's Inequality, Maximum	1	TEACHING METHOD)	1	
				Modulus Theorem, Liouville's				
				Theorem, Elementary functions,				
				Mapping by elementary				
				functions, conformal mapping.				
				fulletions, comormai mapping.				
			UNIT-IV	Taylor and Laurent Series, Absolute and uniform convergence of Power series, Residues and Poles, Residue theorem, Zeros and poles of order m, Evaluation of improper real integrals, Definite integrals involving sines and cosines.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
				N <mark>CE BOOK:</mark> EMATICAL ANALYSIS BY SHANT		1		FINAL EVALUATION THROUGH INTERNAL ASSESMENT
				EX VARIABLE AND APPLICATIO		WN & CHURCHILL.		UPLODED ON LU EXAM PORTAL
П	BSC-III	PAPER-II	UNIT-1	Local theory of curves-Space	MIN	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION
	YEAR,		UNII-I	curves, Examples, Plane Curves,	10	TEACHING METHOD	GET THE	THROUGH
	VI SEM	DIFFERENTIAL		tangent and normal and binormal,	LECTURES	(NOTES IN FORM OF	UNDERSTANDING OF THE TOPIC	ASSIGNMENTS AND
		GEOMETRY & TENSOR		Osculating Plane, normal plane		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS
		ANALYSIS		and rectifying plane, Helices,		VIDEO,CLASS ROOM TEACHING METHOD)		
				Serret-Frenet apparatus, contact		TEACHING METHOD)		
				between curve and surfaces,				
				tangent surfaces, involutes and				
				evolutes of curves, Bertrand				
				curves, Intrinsic equations,				
				fundamental existence theorem				
				for space curves.				
				·				
			UNIT-II	Metric-first fundamental form and arc length, Direction	MIN 09	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE	EVALUATION THROUGH

	coefficients, families of curves, intrinsic properties, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, Gauss- Bonnet theorem, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, Gaussian curvature, umbilic points, lines of curvature, Rodrigue's formula, Euler's theorem.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	AND DISCUSSIONS
UNIT-III	Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensor, inner product, associated tensor. Tensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors, Symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Covariant differentiation.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
UNIT-IV	Gradient of scalars, Divergence of a contra-variant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector,	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

				Riemannian space, Riemannian curvatures and their properties, Ricci tensor, and scalar curvature, Einstein space and Einstein tensor, Geodesics. <u>NCE BOOK:</u> RODUCTION TO DIFFERENTIAL O	GEOMETRY	BY T. J. WILLMORE		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU
III	BSC-III YEAR, VI SEM	PAPER-III DISCRETE MATHEMATICS	UNIT-1	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table. Relation - Definition, types of relation, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EXAM PORTAL EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	Boolean Algebra- Basicdefinitions, Sum of products andproducts of sums, Logic gatesand Karnaugh maps.Graphs- Simple graph, multigraph, graph terminology,representation of graphs,	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

· · · · · · · · · · · · · · · · · · ·				1		
		Bipartite, regular, planar and connected graphs, connected components in a graph, Euler graphs, Hamiltonian path and circuits, Graph colouring, chromatics number, isomorphism				
		and homomorphism of graphs.				
	UNIT-III	Combinatories- Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	UNIT-IV	Finite Automata- Basic concepts of automation theory, Deterninistic Finite Automation (DFA), transition function, transition table, Non Deterministic Finite Automata (NDFA), Mealy and Moore machine, Minimization of finite automation.	MIN 09 LECTURES	ONLINE & OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

REFERENCE BOOK: 1. DISCRETE MATHEMATICS BY C. L.LIU. 2. DISCRETE MATHEMATICS WITH COMPUTER APPLICATION BY TREMBLEY AND MANOHAR.	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
---	---